-A A +A
Er-doped HfO2 thin films with Er content ranging from 0% to 15% are deposited by atomic layer deposition on native oxide free Ge(001). The crystallographic phase is investigated by X-ray diffraction and is found to depend on the Er%. The cubic fluorite structure develops on Ge for Er% as low as 4% and is stable after annealing at 400 °C in N2. Microstrain increases with increasing the Er content within the fluorite structure. Time of flight secondary ion mass and electron energy loss spectroscopy evidence a Ge diffusion from the substrate that results in the formation of a Ge-rich interfacial region which does not present a structural discontinuity with the oxide. The diffusion of Ge is enhanced by the annealing and causes a reordering of the crystal lattice. In annealed films the interface defect density measured by low temperature conductance measurements is found to decrease with decreasing the Er content.
Publication date: 
1 Apr 2011

C Wiemer, S Baldovino, L Lamagna, M Perego, Sylvie Schamm-Chardon, M Fanciulli

Biblio References: 
Volume: 88 Issue: 4 Pages: 415-418
Microelectronic engineering